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We examined the effect of hemin, TGF-^1 and cytosine arabinoside (Ara-C) on the levels of
mRNAs for the erythroid-specific 5-aminolevulinate synthase (ALAS-E) and /-globin in
various human myelogenous leukemia cell lines. Detailed analyses were also made using
one of them, YN-1, which was isolated and established in culture from a patient with
chronic myelogenous leukemia. Our results demonstrate that /-globin protein level and the
percentage of benzidine-positive cells in the cell line increased markedly (10- to 30-fold)
upon treatment with hemin, TGF-yffl, or Ara-C. In contrast, /-globin mRNA was already
markedly expressed prior to treatment in 4 out of 9 cell lines examined, including YN-1,
and the level increased only marginally after treatment with hemin. ALAS-E mRNA levels
were increased in YN-1 cells after treatment with TGF-^1 and Ara-C, while hemin
treatment had little effect. These results indicate that heme supply is insufficient in YN-1
cells and suggest that hemin increases hemoglobin synthesis principally at the post-tran-
scriptional level, whereas TGF-/91 and Ara-C stimulate hemoglobin synthesis by activat-
ing efficient endogenous heme supply in the cells.

Key words: 5-aminolevulinate synthase, globin mRNA, hemin, hemoglobin synthesis,
human leukemia cells.

The first and the rate-limiting step of heme biosynthesis in
animal cells is catalyzed by 5-aminolevulinate synthase
(ALAS) [EC 2.3.1.37] (1). There are two tissue-specific
isozymes of ALAS: one is exclusively expressed in ery-
throid cells (the erythroid-specific ALAS, ALAS-E, or
ALAS2), and the other is expressed ubiquitously in all cells
including erythroid cells (the nonspecific ALAS, ALAS-N,
or ALASl) (2-8). In murine Friend-virus transformed
erythroleukemia (MEL) cells, the level of ALAS-E mRNA
was found to increase markedly, while that of ALAS-N
mRNA was down-regulated when these cells were induced
to undergo erythroid differentiation by treatment with
various chemicals including dimethylsulfoxide (Me2SO)
(9). This finding suggests that ALAS-E expression may be
critically involved in the erythroid differentiation process
that requires a large quantity of heme for hemoglobin
synthesis. Consistent with this conclusion are the findings
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that ALAS activity in bone marrow cells of patients with
X-linked sideroblastic anemia is markedly decreased (10-
13), and that a point mutation in the ALAS-E gene has
recently been identified in such patients (12, 13).

Erythroid differentiation can also be induced in a number
of human cell lines established from patients with eryth-
roleukemia or chronic myelogenous leukemia (CML) by
treatment with various chemicals, cytokines or growth
factors (14-26). The spectrum of the inducers of erythroid
differentiation in human leukemia cell lines is, however,
markedly different from that for MEL cells (14, 27, 28).
For example, hemin is a potent inducer of erythroid
differentiation of human cell lines (14, 15), while Me2S0 is
not (15). In contrast, Me2SO is a potent inducer of eryth-
roid differentiation of MEL cells, whereas hemin is a
relatively weak inducer (9, 29-31).

Thus, using human leukemic cell lines, we examined in
this study the effect of hemin, and two chemical inducers of
erythroid differentiation, i.e., TGF-/31 and Ara-C (21, 32),
on the levels of benzidine (BZ)-positive cells and mRNAs
for ALAS-E and y-globin. Our results demonstrate that
untreated cells of at least 4 human leukemic cell lines
expressed substantial amounts of y-globin mRNA, but the
mRNA was not efficiently translated into the y-globin
protein. In one of the cell lines, YN-1, which was studied in
detail, it was shown that hemin treatment increased
hemoglobin synthesis at the translational level. In contrast,
treatment of these cells with Ara-C or TGF-/51 induced
ALAS-E expression and increased hemoglobin synthesis.
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These results indicate that YN-1 cells lack sufficient heme
and can be induced to undergo erythroid differentiation
either by treatment with hemin or by treatment with
agents that can activate ALAS-E expression.

MATERIALS AND METHODS

Cell Culture-YN-l (33), Y-1K {33), KYO-1 {34),
KU812 {35, 36), KCL-22 {37), NALM-1 {38), and K562
(39) were Philadelphia (Ph1) chromosome-positive cell
lines established from peripheral blood cells of patients
with CML in blastic crisis. Cytochemical and surface
marker analyses demonstrated that YN-1 cells were exclu-
sively committed to the erythroid lineage. Hemoglobin
analyses showed that HbF, Hb Bart's, and Hb Portland
were synthesized in YN-1 cells, the major species being
HbF (33). Y-IK cells were less differentiated than YN-1
cells in that Y- IK cells did not show any BZ( +) cells before
or after chemical treatment {33). KYO-1 cells had a unique
capacity to differentiate spontaneously along the erythroid
and monocytoid lineage when they were initially isolated
from a patient with blastic crisis of CML, but after several
months of passages this property was significantly reduced
(34). KU812 cells were leukemic basophil precursors {35,
36). KCL-22 cells were positive for acid phosphatase and
PAS, and expressed Fc receptors, but they were negative
for BZ staining or glycophorin A, the two major erythroid
markers {37). NALM-1 cells had a specific antigen of acute
lymphoblastic leukemia, but expressed no cell-surface or
cytoplasmic immunoglobulins {38). K562 cells were able to
synthesize embryonic hemoglobins such as Hb Gower 1, Hb
Portland, and Hb Bart's {14).

HL60 was a myelomonocytic cell line {40) which was
isolated from a patient with acute myelogenous leukemia
(M2). KG- la was an undifferentiated blast cell line that was
isolated as a variant subclone of an acute myelogenous
leukemia cell line, KG-1 {41). These two cell lines were
used as non-erythroid control cell lines in this study.

YN-1 and Y-1K cells were cultured in Iscove's modified
Dulbecco's medium supplemented with 10% fetal bovine
serum (FBS) and 50 units/ml of penicillin and 50 /*g/ml of
streptomycin at 37*C in 5% CO2 {33). K562, KYO-1,
KCL-22, KU812, NALM-1, KG-la, and HL60 cells were
cultured in RPMI1640 supplemented with 10% FBS and the
antibiotics as above.

Induction of Hemoglobin Synthesis in YN-1 Cells—
Optimal concentrations of hemin, and Ara-C for hemoglo-
bin induction in YN-1 cells have previously been reported
{33). An optimal concentration of TGF-/31 for hemoglobin
synthesis was determined in this study to be 1 ng/ml.
These chemicals were added to culture media which con-
tained 1X10* cells/ml, and cells were harvested after
various periods of incubation as indicated in the legends to
the figures. BZ( +) staining cells were counted at each time
point, as described previously {16).

RNA Blot Hybridization Analysis—The expression of
mRNAs encoding y-globin, ALAS-E, or ALAS-N was
examined by RNA blot hybridization analysis. Total RNA
was isolated from 1 x 107 cells by the procedure described
previously {42). Twenty micrograms of total RNA was
electrophoresed in a formaldehyde/1% agarose gel, and
electrophoretically transferred to a nitrocellulose filter
(Hybond C-extra, Amersham Japan, Tokyo). The JW151

y-globin cDNA clone and the HG126 clone of the ribosomal
RNA gene were obtained from the Japanese Cancer
Research Resources Bank (JCRB), Tokyo. The plasmid
JW151 was digested with iVcol and EcoBl, and the result-
ing 359 bp fragment was isolated, and used as a y-globin
probe.

cDNAs encoding human ALAS-E and ALAS-N were
isolated independently in our laboratory. The cDNA frag-
ments which match nucleotides 216 to 1,160, and 750 to
1,338 of the reported human ALAS-E and ALAS-N cDNA
sequences, respectively {43, 44), were used as probes in
this study. The cDNA fragments were labeled by the
random primer extension method {45) and used as probes.
Hybridization and washing of nitrocellulose filters were
performed using standard procedures.

Immunoblot Analysis—For immunoblot analysis, 1X107

YN-1 cells were homogenized in 100//I of a solution
containing 0.25 M sucrose, 20 mM Tris-HCl (pH 7.4), 0.2
mM dithiothreitol, 0.1 mM pyridoxal 5'-phosphate, and 0.5
mM EDTA. In addition, 10/*g/ml each of leupeptin,
chymostatin, antipain, and pepstatin (Peptide Institute,
Osaka) were added as protease inhibitors. The homogenate
was centrifuged at 600 X^ for 7min at 4'C. The super-
natant fraction was centrifuged again at 10,000 X^, for 7
min. The resulting precipitate was dissolved directly in 100
mM Tris-HCl (pH 7.4) containing 3.2% SDS, 10% [w/v]
glycerol, and 8% [v/v] 2-mercaptoethanol (SDS sample
buffer). Mitochondrial fraction from anemic rat blood cells
was prepared as described previously (7). Positive controls
for ALAS-N were obtained by injecting allylisopropylacet-
amide (AIA) into rats to induce liver expression of ALAS-N
{46).

For the immunoblot assay of hemoglobin, 1 X 107 cells
were homogenized in SDS sample buffer or urea/SDS
sample buffer [1% SDS, 8 M urea, 1% 2-mercaptoethanol,
and 10 mM sodium phosphate buffer (pH6.8)], and then
centrifuged at 600 X g for 7 min. The supernatant was used
directly for the immunoblot analysis of hemoglobin. Pro-
tein concentration was determined by using a Protein Assay
Kit (BioRad). Five micrograms of protein was loaded onto
either an 18% Laemmli gel system {47) or an urea/SDS gel
electrophoresis system {48), and electrophoretically sepa-
rated. Proteins were then transferred to a sheet of poly-
vinylidene difluoride (PVDF) membrane (Immobilon-P,
MiUipore, Bedford, MA). After blocking with Tris-buffered
saline (TBS) containing 3% skimmed milk at 4'C overnight,
the membrane was reacted with the primary antibodies in
TBS containing 1% bovine serum albumin (BSA), and
subsequently reacted with goat anti-rabbit IgG conjugated
with horseradish peroxidase. The immune complex on the
membrane was visualized by the enhanced chemilumines-
cence (ECL) method (Amersham). Antibodies used in this
study were rabbit anti-rat ALAS-N antibody (7, 49), and
anti-human HbF antibody (Calbiochem, La Jolla, CA). The
former antibody has been shown to cross-react with rat
ALAS-E protein (7), and human ALAS-N and ALAS-E
proteins (unpublished observation). The latter antibody
had been adsorbed against human HbA prior to use.

Immunofluorescent Staining with Anti-y-Globin Chain
Antibody—Smears of YN-1 cells, with or without hemin
treatment, were prepared on glass slides using Cytospin 3
(Shandon, Cheshire, UK). Cells were fixed in methanol for
30 min at room temperature and incubated with the HbF
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antibody at 1:200 dilution. Then cells were incubated with
fluorescein isothianate (FITC) -conjugated goat anti-rab-
bit-IgG [F(ab')2] for 30 min at room temperature, and
examined using a fluorescence microscope (Olympus,
Tokyo).

Lane 1 2 3 4 5 6 7 8

ALAS-E

y-Globin
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rRNA

Fig. 1. RNA blot analysis of y-globin and ALAS-E expres-
sions in human myelogenous leukemia-derived cell lines.
Human myelogenous leukemia cell lines with erythroid properties
express y-globin mRNA abundantly. K562 (lane 1), YN-1 (lane 2),
KU812 (lane 3), Y-1K (lane 4), and KYO-1 (lane 7) are cell lines
committed to the erythroid lineage. KG-la (lane 6) and KCL-22 (lane
7) cell lines are both myeloid cell lines and NALM-1 (lane 8) is a
lymphoid cell line; these three cell lines do not show any erythroid
marker expression. ALAS-E and y-globin mRNA expression was
analyzed by RNA blotting. The filter was first hybridized to ALAS-E
(48 h exposure to imaging plate) and then to y-globin probe (2 h
exposure). It was washed in water, and rehybridized to a ribosomal
RNA probe to confirm the amount of RNA loaded. 18S rRNA bands
are shown.

100 -i

£. 80
CO

CD

u
?
«0

<D

m

60 -

40 -

20 -

Hemin

20 40 60

Time (h)

80 100

Fig. 2. Induction of hemoglobin synthesis in YN-1 cells after
treatment with hemin, TGF-£1, or Ara-C. YN-1 cells were
incubated with hemin (100 ̂ M), TGF-/J1 (1 ng/ml), or Ara-C (100
nM). Cells were harvested at various time points as indicated in the
figure. Viable cells and BZ( + ) cells were counted at each time point
using a method as described previously (26). These experiments were
repeated three times and averages of the percentage values are
shown.

RESULTS

y-Globin mRNA Is Abundantly Expressed in Several
Human Leukemia Cell Lines—Nine human leukemia cell
lines were examined in this study, and seven of them were
positive for the Ph1 chromosome. These cell lines were
found to express little or no hemoglobin as judged from the
small number of BZ-positive cells (less than 10%). In
contrast to the result of BZ staining, we found substantial
levels of y-globin mRNA expression in 4 out of 7 Ph1

chromosome-positive cell lines (YN-1, KYO-1, KU812,
and K562) in an RNA blot hybridization analysis (Fig. 1). A
similar finding has been reported in other human leukemic
cell lines {e.g., 50). Three other cell lines had either a lesser
but detectable level (Y-1K) or an undetectable level (KCL-
22 and NALM-1) of y-globin mRNA expression. We also
examined two Ph1 chromosome-negative leukemia cell
lines, KG-la and HL60, but these cell lines showed no
detectable y-globin mRNA expression (Fig. 1 and data not
shown). These findings in several human leukemia cell lines
are in contrast to that in MEL cells, which show only a small
amount of globin mRNAs expression before Me2S0 treat-
ment (9, 51), and suggest that globin mRNAs in human
leukemia cell lines may not be efficiently translated into
globin proteins.

Lane 1 2 3 4 5

ALAS-E

ALAS-N
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Fig. 3. RNA blot analysis of ALAS-E, ALAS-N, and r-globin
mRNAs in YN_i cells treated with Ara-C. YN-1 cells were
incubated with Ara-C (100 nM), and RNA was prepared at 12 (lane
2), 36 (lane 3), 60 (lane 4), and 84 h (lane 5) after the addition of
Ara-C. RNA was also prepared at the 12 h time point from Ara-C-
untreated cells which were replated at the same time as the Ara-C-
treated cells, and used as a control (lane 1). Total RNA from each time
point was hybridized to ALAS-E, ALAS-N, or y-globin probes.
Exposure times of the filter to the photoimaging plate were 12 h, 24
h, and 1 h for ALAS-E, ALAS-N, and y-globin probes, respectively.
A probe detecting ribosomal RNA was used as an internal control.
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In untreated YN-1 cells, globin mRNA was markedly
expressed and only a brief exposure period was required for
detection in RNA blotting analysis, whereas the ALAS-E
mRNA level in these cells was low and required an ex-
tended exposure period for detection, even using a BAS-
2000 image analyzer plate (Fig. 1).

The level of ALAS-E mRNA among other untreated
leukemia cell lines was highest in K562 cells, while it was
very low in Y-1K cells. The percentage of BZ( + ) cells was
7-10%, 0%, and 1-5% for untreated K562, Y-1K, and YN-1
cells, respectively. Thus, there is an approximate correla-
tion between the level of ALAS-E mRNA and the percent-
age of BZ( + ) cells.

To gain an insight into the nature of the discrepancy
between y-globin mRNA levels and hemoglobin contents,
we examined the time course of induction of hemoglobin
synthesis after treatment of YN-1 cells with hemin. A
similar study was made with Ara-C, or TGF-/S1, either of
which is known to induce erythroid differentiation in other
cell lines (21, 43) (Fig. 2). The percentage of BZ( + ) cells
increased with time, from 1-5% in untreated YN-1 cells
to > 50% at 84 h or thereafter, upon treatment of cells with
hemin, Ara-C or TGF-ySl. Results with hemin and Ara-C
were similar to those which have been reported in two other
cell lines (21, 43). Hemin was the strongest inducer of
hemoglobin synthesis, since the percentage of BZ( + ) cells
reached more than 90% at 96 h after hemin treatment,
while Ara-C, or TGF-y91, could induce BZ( + ) cells to the
extent of approximately 60% at 84 h.

The induction of BZ( + ) cells with TGF-/S1 in the YN-1
cell system indicates that TGF-y31 is a significant inducer of
erythroid differentiation of human leukemia cell lines.

Lane 1

rat
ALAS-E

human
ALAS-N

ALAS-E

Under the conditions of these experiments, cellular growth
curves for hemin-treated and TGF-/?1 -treated cells were
only marginally affected as compared with that for untreat-
ed cells, whereas Ara-C-treated cells showed significant
retardation of cell growth (data not shown).

Ara-C Increased Both ALAS-E and ALAS-N mRNA
Levels in YN-1 Cells—Changes in the levels of mRNAs
encoding y-globin, ALAS-E and ALAS-N were examined
by RNA blot hybridization analysis in YN-1 cells after
treatment with Ara-C. Treatment of YN-1 cells with 5X
10~6 M Ara-C resulted in a time-dependent increase in both
ALAS-E and ALAS-N mRNAs (Fig. 3). At 84 h, ALAS-E
and ALAS-N mRNAs increased 30- and 7-fold, respective-
ly, over the untreated control level. In contrast, the level of
y-globin mRNA appeared not to be increased substantially
(Fig. 3). These experiments were repeated three times, and
the marked induction of both ALAS-E and ALAS-N
mRNAs was confirmed in each experiment, as was the
relatively small change in y-globin mRNA levels. The
results suggest that induction of hemoglobin synthesis by
Ara-C reflects increases in the ALA synthases, rather than
a transcriptional activation of the y-globin gene.

To examine whether the increase in mRNAs resulted in
the increase in the enzyme proteins, immunoblot analysis
of ALA synthases was performed using a rabbit antibody
directed against rat ALAS-N (7, 49). This antibody recog-
nized both precursor form (the largest band) and mature

Lane 1 2 3 4 5
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y-Globln

Fig. 4. Immunoblot analysis of ALAS-E and ALAS-N In YN-1
cells. Mitochondrial fractions from anemic rat blood cells (lane 1),
from the livers of rats either untreated (lane 2) or treated (lane 3)
with AIA, and from YN-1 cells untreated (lane 4) or treated (lane 5)
with Ara-C were prepared, separated electrophoretically and trans-
ferred to a PVDF membrane. The membrane was incubated with
rabbit anti-rat ALAS-N antibody which cross-reacts with ALAS-E.
The band in lane 1 representing rat ALAS-E and bands in lane 5
representing human ALAS-N (both precursor and mature forms) and
ALAS-E (mature form) are indicated. Intense bands in lanes 2 and 3
(shown by asterisk) are non-specific, and these bands were not
induced by AIA.

28S rRNA

Fig. 5. RNA blot analysis of ALAS-E, ALAS-N, and /-globin
mRNAs in YN-1 cells treated with TGF-01. YN-1 cells were
incubated with 1 ng/ml of TGF-^1 and RNA was prepared at 12 (lane
2), 36 (lane 3), 60 (lane 4), and 84 h (lane 5) after the addition of
TGF-/?1. RNA was also prepared at the 84 h time point from
untreated cells which were replated at the same time as the TGF-/91-
treated cells, and used as a control {\ane 1). Exposure times of the
filters to the photoimaging plate were 48 h for ALAS-E and ALAS-N
probes, and 0.5 h for the y-globin probe. A ribosomal RNA probe was
used as an internal control.
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Lane 1 2 3 4 5
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Fig. 6. RNA blot analysis of ALAS-E and 7-globin mRNAs in
YN-1 cells treated with hemin. YN-1 cells were incubated with 100
H M hemin, and RNA was prepared at 24 (lane 2), 48 (lane 3), 72 (lane
4), and 96 h (lane 5) after the addition of hemin. RNA was also
prepared at the 24 h time point from untreated cells which were
replated at the same time as the hemin-treated cells, and used as a
control (lane 1). RNA blot analysis was performed using ALAS-E and
y-globin probes. Exposure times of the filters to the photoimaging
plate were 19 h and 1 h for ALAS-E and y-globin probes, respective-
ly.

form (the second largest band) of the ALAS-N in the liver
of rats treated with AIA (Fig. 4, lane 3). In addition, this
antibody cross-reacted with ALAS-E, as shown by the
formation of a specific band (approximately 56 kDa, Ref. 7)
with the mitochondria! fraction from rat reticulocytes (lane
1). The specificity of this antibody to ALAS-E has also been
shown previously using a purified rat ALAS-E protein (7).

Using the mitochondria! fraction of YN-1 cells, a single
band of 65 kDa was detected in untreated control cells (lane
4), whereas the intensification of the 65 kDa band and
appearance of 75 kDa band were observed in Ara-C-in-
duced cells (lane 5). The 65 kDa band corresponds to human
mature ALAS-N, whereas the 75 kDa band corresponds to
human ALAS-N precursor. Thus, the sizes of human
ALAS-N and its precursor were found to be larger than
those of rat ALAS-N and its precursor. The increase of
ALAS-N and its precursor in the Ara-C-treated YN-1 cells
is an intriguing finding in this experiment. The accumula-
tion of the precursor protein seems to be unique for
ALAS-N among mitochondrial matrix proteins encoded by
the nuclear genome. In this regard, we have previously
shown the association of the ALAS-N precursor with
mitochondria in the rat liver after the induction of ALAS-N

B Fig. 7. Immunoblot and immunofluorescent staining analysis of 7-
globin In YN-1 cells treated with hemin, Ara-C, or TGF-01 with anti-
/-globin chain antibody. A and B, cell lysates were prepared from YN-1 cells
treated for 72 h with 100 ̂ M hemin (lane 2), 100 nM Ara-C (lane 4), or 1 ng/
ml TGF-/31 (lane 5), or from YN-1 cells untreated with inducers (lanes 1 and
3). Five micrograms of protein were separated electrophoretically by 18%
Laemmli gel (lanes 1 and 2), or urea/SDS gel (lanes 3-5), and transferred to
PVDF membranes. The membranes were incubated with rabbit anti-human
HbF antibody. C and D, smears of YN-1 cells, with or without treatment by
hemin, were fixed and incubated with the HbF antibody. Cells were incubated
with fluorescein isothianate (FTTC)-conjugated goat anti-rabbit-IgG and
examined using a fluorescence microscope.
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by treatment of animals with ALA (52).
It should also be noted that a band, which is similar in size

to that of ALAS-E in rat reticulocytes, is induced markedly
and becomes detectable in YN-1 cells after the Ara-C
treatment (lane 5). This band is most likely to represent the
human mature form ALAS-E. These findings indicate that
both ALAS-E and ALAS-N proteins are increased by the
Ara-C treatment of YN-1 cells.

TGF-/31 Increased ALAS-E mRNA Levels in YN-1
Cells—We also examined the effects of TGF-/51 on the
levels of mRNAs encoding y-globin, ALAS-E, and ALAS-
N in YN-1 cells. Treatment of cells with TGF-/J1 (1 ng/ml)
markedly increased ALAS-E mENA levels (Fig. 5). This
result indicates that TGF-/J1 is a potent inducer of eryth-
roid differentiation in YN-1 cells, as is the case for HEL
cells (53). In addition to ALAS-E, y-globin mENA and
ALAS-N mRNA levels were also increased by the TGF->?1
treatment (Fig. 5). The increase in BZ( + ) cells was greater
than 7-fold at 60 h after treatment with TGF-ySl (Fig. 2),
which is similar to the increase in ALAS-E mRNA.

Hemin Induced Neither ALAS-E nor ALAS-N mRNA in
YN-1 Cells—The percentage of BZ( + ) cells in YN-1 cells
increased more than 30-fold 96 h after treatment with
hemin ( 1 X 1 0 " 4 M ) (Fig. 2). This finding confirms our
previous observation that hemin is the most potent inducer
of hemoglobin synthesis in YN-1 cells (33). The level of
y-globin mRNA was, however, increased less than 2-fold
by hemin treatment (Fig. 6), which was not sufficient to
account for the marked increase in BZ( + ) cells (Fig. 2).
Both ALAS-E (Fig. 6) and ALAS-N mRNA levels (data not
shown) decreased after hemin treatment. These results
indicate that exogenously added hemin stimulated hemo-
globin synthesis at a post-transcriptional step, rather than
activating transcription of the y-globin and ALAS-E genes.

Translation of y-Globin mRNA Is Stimulated by Hemin,
Ara-C, and TGF-/31— In addition to the BZ staining,
changes in the y-globin protein levels were examined using
a rabbit anti-human HbF antibody, by immunoblot and by
immunofluorescence analyses. In contrast to the small
change in y-globin mRNA levels, y-globin protein synthe-
sis increased markedly after treatment with hemin (Fig.
7A), Ara-C (Fig. 7B), or TGF-£1 (Fig. 7B). This was also
shown at the cellular level by immunofluorescence studies
which were carried out using the anti-HbF antibody. While
uninduced cultures showed few fluorescent cells (Fig. 7C),
hemin-treated cultures showed as much as 80% fluorescent
cells (Fig. 7D). Thus, these observations suggest that hemin
treatment of YN-1 cells stimulates y-globin synthesis
principally by enhancing the translation of y-globin mRNA.

DISCUSSION

The present study demonstrates that y-globin mRNA is
abundantly expressed in several untreated human leuke-
mia cell lines, while hemoglobin production is significantly
suppressed in these cells. This situation was observed in at
least 4 out of 7 Ph1 chromosome-positive leukemia cell
lines examined in this study. Expression of different globin
mRNAs to variable degrees was also reported in some other
human leukemia cells lines (17, 18, 21, 22, 50, 54), though
they were not always examined with respect to the balance
between heme and globin synthesis.

In comparison to y-globin mRNA expression, ALAS-E

mRNA in YN-1 cells was present at much lower levels as
judged from RNA blotting analysis. Immunoblot analysis
utilizing anti-rat ALAS antibody showed that ALAS-E
protein was undetectable in untreated YN-1 cells (44).
These findings suggest that the discrepancy between
y-globin mRNA expression and its protein product is in
part due to heme deficiency. In fact, hemin treatment of
these cells led to the formation of hemoglobin, without
activating the ALAS-E gene. Stimulation of hemoglobin
synthesis was also reported in other human leukemia cell
lines after treatment with hemin or ALA (18, 20-22, 24,
25, 32).

While some authors have reported the transcriptional
effect of heme on hemoglobin formation (50), there are
many other reports which have proposed the post-tran-
scriptional control (55-57). For example, heme deficiency
leads to the formation of a heme-controlled translational
inhibitor, which inhibits protein synthesis at the transla-
tional level by enhancing phosphorylation of the a-subunit
of the eukaryotic initiation factor 2 (58), and it is thus
tempting to speculate that such an inhibitor may also play
a role in these cells. In contrast to hemin, treatment of
YN-1 cells with Ara-C or TGF-/?1 showed a similar in-
crease in ALAS-E mRNA levels and BZ( + ) cells, and the
change in y-globin mRNA level was more substantial than
in the case with hemin. These findings suggest that Ara-C
and TGF-/31 activate the ALAS-E gene, which in turn
raises heme concentrations to permit hemoglobin synthe-
sis.

The lack of ALAS-E expression and hemoglobin synthe-
sis has also been described in other cell lines of various
origin which express globin mRNA. For example, mouse
DR-1 cells, a subclone of DS19 MEL cells, express y?-globin
mRNA, while they fail to show hemoglobin synthesis upon
Me2SO treatment. The level of y9-globin mRNA declines,
rather than increases, in response to Me2SO. Notably,
these cells lack ALAS-E mRNA expression (9). The defect
in DR-1 cells in hemoglobin synthesis can be partially
corrected by the addition of exogenous hemin, suggesting a
critical role of heme in their hemoglobin synthesis (61).
Another cell line, HD-6, a temperature sensitive (ts)-avian
erythroblastosis virus (AEV)-transformed chicken eryth-
roid cell line, is known to fail to undergo erythroid differ-
entiation (59), and also lacks the expression of ALAS-E
mRNA and its protein product (unpublished observation).
A subclone of K562 cells, termed K562-L, expresses
comparable levels of y-globin mRNA to those in K562 cells
(60), while they completely lack the expression of ALAS-E
mRNA (unpublished observation), and show no detectable
BZ( +) cells (61). These findings thus support the hypothe-
sis that the expression of ALAS-E is an essential event in
erythroid differentiation, and that the abrogation of its
expression and resultant lack of hemoglobin synthesis may
be a frequent event in human leukemia cell lines. The fact
that ALA and hemin are generally effective in stimulating
hemoglobin synthesis in human leukemia cell lines (18, 20-
22, 24) also supports this conclusion.

The expression of fetal or embryonic globin genes in
leukemic cell lines may be either a reflection of a fetal or
embryonic potential in normal definitive hematopoietic
progenitors (20) or defective heme synthesis due to the
lack of ALAS-E expression in these cells. In either case,
heme deficiency may interfere with normal development of
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erythroid cells, and thereby make such cells vulnerable to
oncogenic transformation by various stimuli. In support of
this hypothesis is the fact that v-ErbA, an oncogene in
AEV, suppresses the expression of erythroid-specific genes
such as ALAS-E, band 3 and carbonic anhydrase, which
then enhances the transforming activity of the v-ErbB
oncogene via the blockade of the erythroid development of
the infected cells {62). Thus, the blockade of heme biosyn-
thesis, including that which occurs at the level of ALAS-E
expression, may have significant influence on the expres-
sion of the transformed phenotype of leukemia cells.

Another line of evidence implicating heme deficiency in
cellular transformation involves refractory anemia with
ringed sideroblasts (or primary acquired sideroblastic
anemia) (63, 64). Some patients with this disorder are
known to develop leukemic transformation {65, 66), and
many patients with this condition have decreased ALA
synthase expression (63, 64), suggesting that there may be
an association between these events.

Our findings in this study demonstrated that Ara-C and
TGF-y91 can promote erythroid development of certain
human leukemia cell lines. We also obtained similar
findings in K562 cells following treatment with activin A
(data not shown). Hemoglobin synthesis in these cells was
largely dependent on the heme supply, which was deter-
mined by the level of ALAS-E expression (9). These
findings suggest that it may be possible to treat patients
having certain chronic myelogenous leukemias with signifi-
cant globin mENA expression by using hemin, which may
facilitate hemoglobin synthesis, and thus cell differentia-
tion. Hemin has been used to treat patients with porphyrias
(67), and sideroblastic anemias (68), or myelodysplastic
syndromes (69, 70) with a variable degree of success.

Recently genomic DNA clones encoding human ALAS-E
gene have been isolated and analyzed (43). We have also
isolated genomic DNA clones for human ALAS-E indepen-
dently, and analyzed the regulatory region of the gene
(unpublished observation). A cluster of cis-acting elements
which are known to be important in determining erythroid-
specific transcriptional activation, e.g., GATA-1, AP-1/
NF-E2, CACCC, and CCAAT factor binding sequences
(71- 73), was found in the promoter region of the ALAS-E
gene. The region(s) which is important for the TGF-/51,
Ara-C, and activin A-mediated activation of the ALAS-E
gene is currently being investigated in our laboratory by
functional analysis of its regulatory region.
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